
1/31/2002 1

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Assessing Robustness Properties in Dynamic Assessing Robustness Properties in Dynamic
Discovery of Ad Hoc Network ServicesDiscovery of Ad Hoc Network Services

Christopher Dabrowski and Kevin Mills

Briefing for Sun Microsystems
Tech-a-Tech

Burlington, MA
October 4, 2001

Adaptive Software for a Changing World

1/31/2002 2

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Previous Work
Verifying our approach - using Jini as an example

Overview of On-Going Work
How do different service discovery architectures respond
to node and link failures?
How can these responses be improved?

Plans for Future Work

Presentation RoadmapPresentation Roadmap

1/31/2002 3

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Dynamic discovery protocols..Dynamic discovery protocols..

• In the future, all software systems will be distributed systems written to
operate over a network, where conditions vary.

• Dynamic discovery protocols provide a foundation upon which such
distributed systems will be constructed.

• Understanding the current (first) generation of discovery protocols is
essential to enable industry to improve designs for the second and
subsequent generations.

• Our project applies architecture-based analysis, languages, and tools to
help industry improve designs and specifications for service discovery
protocols and Architectural Description Languages (ADLs) and tools.

enable network elements (including software clients and services, and devices):
(1) to discover each other without prior arrangement,
(2) to express opportunities for collaboration,
(3) to compose themselves into larger collections that cooperate to meet

an application need, and
(4) to detect and adapt to changes in network topology.

NIST/ITL role in supporting industry …NIST/ITL role in supporting industry …

1/31/2002 4

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

DoD Programs Related to this Project
Fault Tolerant Networks – DARPA Program
http://www.darpa.mil/ito/research/ftn/index.html

OpenWings – Joint Motorola-Sun-U.S. Army Program (key enabler
of Joint Vision 2020)
http://www.openwings.org/index.htm

Organically Assured and Survivable Information Systems (OASIS) –
DARPA Program
http://www.darpa.mil/ato/programs/oasis.htm

Dynamic Assembly for System Adaptability, Dependability, and
Assurance (DASADA) - DARPA Program
http://www.darpa.mil/ito/research/dasada/index.html

Critical Infrastructure Protection (CIP) and High Confidence,
Adaptable Software (SW) Research Program of the University
Research Initiative (URI) – Office of Naval Research
http://www.onr.navy.mil/sci_tech/special/cipswuri/

1/31/2002 5

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Selected Current (First) Generation Selected Current (First) Generation
Protocols for Dynamic Service DiscoveryProtocols for Dynamic Service Discovery

Universal

Plug and Play

1/31/2002 6

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

• Build a generic, domain model (UML) providing consistent terminology
encompassing a range of service discovery protocols.

• Build executable models of service discovery protocols from extant
specifications, and analyze them under conditions of dynamic change.

• Build measurement infrastructure and measure implementations of
dynamic service protocols for scalability.

• Build simulation models of service protocols and assess the
performance of such models in the face of dynamic change.

• Design, model, and evaluate protocol mechanisms that enable
discovery protocols to self-adapt in the face of dynamic change (this part
of the project is funded by the DARPA Fault Tolerant Networks program).

To provide metrics and approaches to compare and contrast emerging
dynamic discovery protocols, to better understand their critical
functions, to identify weaknesses, and to strengthen the robustness, quality
and correctness of designs for future protocols.

Our GoalOur Goal

Our Overall Technical ApproachOur Overall Technical Approach

1/31/2002 7

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Previous Work
Verifying our approach - using Jini as an example

Overview of On-Going Work
How do different service discovery architectures respond
to node and link failures?
How can these responses be improved?

Plans for Future Work

Presentation RoadmapPresentation Roadmap

1/31/2002 8

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

• Model Discovery Protocol specifications using Architectural
Description Languages (ADLs) and associated tools

• Analyze Discovery Protocol models to assess consistency, correctness,
and completeness under conditions of dynamic change.

• Compare and contrast our models with regard to function, structure,
behavior, performance, complexity, and scalability under conditions of
dynamic change.

Technical Approach Specific to Technical Approach Specific to
Architectural Modeling & AnalysisArchitectural Modeling & Analysis

1/31/2002 9

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Foundation for Comparisons: A Generic Structural Model Foundation for Comparisons: A Generic Structural Model
(UML) for Service(UML) for Service--Discovery DomainDiscovery Domain

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
Provider

Service
Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache Parameter

Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

1/31/2002 10

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o Architectural Description Languages & Tools….
• Represent essential complexity of service discovery protocols

with effective abstractions
– Rapide, public-domain ADL and toolset developed at Stanford

University for DARPA, provides ability to execute architecture
specifications, producing Partially Ordered Sets of Events (POSETs)
for analysis.

• Provide a framework and context
– to compare and contrast dynamic service discovery architectures
– to define metrics that yield qualitative and quantitative measures of

dynamic component-based software
– to model alternate approaches to specific functions or mechanisms

where permitted by a specification or where a specification appears
ambiguous

– to help pinpoint where inconsistencies and ambiguities may exist
within software implementing specifications & to understand how such
issues arise

• Provide our work to ADL purveyors and researchers for use in
improving future languages and tools

1/31/2002 11

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

ArchitectureArchitecture--based Approach to Modeling and Analysisbased Approach to Modeling and Analysis
(using (using RapideRapide, an Architecture Description Language and Tools , an Architecture Description Language and Tools

Developed for DARPA by Stanford)Developed for DARPA by Stanford)

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification Model

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

TopologyScenario

Execute with
Rapide

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

Consistency
Conditions

1/31/2002 12

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Previous Work
Verifying our approach - using Jini as an example

Overview of On-Going Work
How do different service discovery architectures respond
to node and link failures?
How can these responses be improved?

Plans for Future Work

Presentation RoadmapPresentation Roadmap

1/31/2002 13

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o Analysis of Jini Using Architecture-Based Approach

• Architecture depicts network topological entities, Jini
entities and major functions, and key behavior

• Consistency conditions posit state relationships a protocol
should strive to maintain among functional entities

• Scenarios trigger possible sequences of events

1/31/2002 14

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o Sample Network Topology Applicable to Jini Entities

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

1/31/2002 15

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Layered View of Prototype JINI Architecture in Rapide
Derived from SEI Architectural Layers Approach

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

1/31/2002 16

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Representing Jini Discovery in Terms of Our Model

• In Multicast Mode, an SU, SM, or SCM
will try to discover SCMs that are
members of the same group as the
discovering entity.

And an SU, SM, or SCM may
dynamically join or leave groups

• In Directed Mode, an SU, SM, or SCM
will try to discover SCMs that are on a
persistent list of SCMs to be discovered
maintained by the discovering entity.

And SCMs to be discovered may be
dynamically added or removed from
the persistent list.

SU, SM, or
SCM

SCM API

Request SCM API

Probe groups() SCMs ()

TCP Connect

AGRESSIVE DISCOVERY

SCM

LAZY DISCOVERY

Announce groups()

TCP Connect

SCM API

Request SCM API

DIRECTED DISCOVERY

TCP Connect

SCM API

Request SCM API

M
ul

tic
as

t
M

od
e

D
ire

ct
ed

M
od

e

1/31/2002 17

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

RealReal--Time Checking of Consistency ConditionsTime Checking of Consistency Conditions
Sample Consistency Condition #4 (race condition)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested-notifications &
(SM, SD) IsElementOf SCM registered-services &
Matches ((SM, SD), (SU, NR))

implies (SM, SD) IsElementOf (SU matched-services)

…that is, if an SU has requested notification with a Service Cache Manager of a
service that matches a service description registered by a Service Manager on
the same Cache Manager, then that service description should be provided to the
Service User.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager
• SU is Service User
• NR is Notification Request

• requested-notifications is a set of (SU,NR) pairs
maintained by the SCM

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• matched-services is the set of (SM,SD) pairs
maintained by the SU

1/31/2002 18

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Should the Jini Specification Advise about Possibility for
Registration Race Condition?

For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

1/31/2002 19

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

RealReal--Time Checking of Consistency ConditionsTime Checking of Consistency Conditions
Sample Consistency Condition #3

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs
(SM, SD) IsElementOf SCM registered-services
NOT (SCM IsElementOf SM persistent-list)

implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

…that is, if a Service Manager has discovered, and registered its service
descriptions on, a Service Cache Manager that is not on the Service Manager’s
persistent list, then the Service Manager must be seeking group membership in
at least one group the Service Cache Manager belongs to.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• discovered-SCMs is a set of SCMs discovered
by the SM

• Persistent-list is the set of SCMs the SM is
seeking though directed discovery

1/31/2002 20

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

What Might Happen When
SCM Changes Group Membership Dynamically?

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

Scenario SM4 SCM1

GroupJoin GROUP1
Probe SM4 GROUP1

Groups To Join
(GROUP1)

Registered Services
(SM4, SD1)

AdminDeleteGroup GROUP1

Group Membership
(GROUP1, GROUP2)+

+

Register SM4 SD1
+

CC3 Violated

-

Found GROUP 1 SCM1

Group Membership
(GROUP2)

Discovered SCMs
MD (SCM1)

DD ()

Groups To Join
(GROUP1)

1/31/2002 21

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o RealReal--Time Checking of Consistency ConditionsTime Checking of Consistency Conditions
Sample Consistency Condition #1

For All (SM, SD, SCM): (SM, SD) IsElementOf SCM registered-services
implies SCM IsElementOf SM discovered-SCMs

…that is, a Service Manager should register its Services on an Service
Cache Manager only if it maintains that Cache Manager on its “known
SCM” LIst.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• discovered-SCMs is a set of SCMs discovered
by the SM

Same executable model can be used to assess selected performance
properties and to measure complexity+

+future work on the project intends to investigate the relationship between design complexity (applying
ideas from Kolmogorov Complexity) and design quality (as represented by violation of consistency
conditions)

1/31/2002 22

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Could the Jini Specification Lead to Implementations Exhibiting
Undesired Interaction between Directed and Multicast Discovery?

Based on one
possible
interpretation of
specification using
a single-list
assumption

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

Scenario SM4 SCM3

GroupJoin GROUP2

Found SCM3 GROUP2Discovered SCMs
(SCM3) Register SM4 SD1 Registered Services

(SM4, SD1)

AddSCM SCM3

GroupLeave GROUP2 Discover SCM3

Cancel SM4 SD1

Registered Services
()Found SCM3

Cancelled SM4 SD1

Discovered SCMs
(SCM3)

Discovered SCMs
()

+

+

+

-

- Register SM4 SD1 Registered Services
(SM4, SD1)+

CC1 Violated

Registered Services
()-

Lease Expired
SM4 SD1

Probe SM2 GROUP2

Consistency Restored

No Duplicates Allowed

1/31/2002 23

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o RealReal--Time Checking of Consistency Conditions (Time Checking of Consistency Conditions (con’tcon’t))
Sample Consistency Condition #2

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs &
SD IsElementOf SM managed-services

implies (SM, SD) IsElementOf SCM registered-services

…that is, a Service Manager should register its Services on an Service
Cache Manager if the Service Manager has discovered the Cache
Manager and is maintaining the SCM identifier on its “known SCM” LIst.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager

• discovered-SCMs is a set of SCMs discovered
by the SM

• managed-services is a set of (SM,SD) pairs
maintained by the SM

• registered-services is the set of (SM, SD) pairs
maintained by the SCM

1/31/2002 24

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Based on a second
possible
interpretation of
specification using
separate-list
assumption

Scenario SM4 SCM1

GroupJoin GROUP1 Probe SM4 GROUP1

Discovered SCMs
MD()

DD (SCM1)
Register SM4 SD1

Registered Services
(SM4, SD1)

AddSCM SCM1

GroupLeave GROUP1

Discover SCM1

Registered Services
()

Found SCM1

Cancelled SM4 SD1

Discovered SCMs
MD (SCM1)
DD (SCM1)

Discovered SCMs
MD ()

DD (SCM1)

+

+

+

-

-

Register SM4 SD1

Registered Services
(SM4, SD1)+

CC2 Violated

Registered Services
()-

Found GROUP 1 SCM1

Cancel SM4 SD1

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

Could the Jini Specification Lead to Implementations Exhibiting
Undesired Interaction between Directed and Multicast Discovery?

1/31/2002 25

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Previous Work
Verifying our approach - using Jini as an example

Overview of On-Going Work
How do different service discovery architectures respond
to node and link failures?
How can these responses be improved?

Plans for Future Work

Presentation RoadmapPresentation Roadmap

1/31/2002 26

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

• Two-Party vs. Three-Party architectures
Two alternative architectural designs that underlie commercial service
discovery protocols, including Jini, UPnP, and Service Location Protocol

• Impact of Study:
1. Provide valuable information to designers and users of service

discovery protocols for improving specifications, thus promoting
software quality and reliability.

2. Create generic set of test scenarios and related metrics that
companies can use when developing products

3. Provide recommendations on improving ADLs

How do TwoHow do Two-- and Threeand Three--Party Architectures for Party Architectures for
Service Discovery Respond to Failures?Service Discovery Respond to Failures?

1/31/2002 27

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Selected Current (First) Generation Selected Current (First) Generation
Protocols for Dynamic Service DiscoveryProtocols for Dynamic Service Discovery

Universal

Plug and Play

3-Party Design 2-Party Design Adaptive 2/3-Party Design

Vertically Integrated
3-Party Design

Network-Dependent
3-Party Design

Network-Dependent
2-Party Design

1/31/2002 28

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Two Party vs. Three Party ArchitecturesTwo Party vs. Three Party Architectures

Notification Request

(from Data View)

<<repository entry>>

Parameter Notification Request

(from Data View)

<<repository entry>>
Service Cache
<<repository>>

Notification Cache
<<repository>>

0..*0..*

Aggregates

Service Cache
<<repository>>

Service Repository
<<repository>>

Service Parameter Change Notification
<<repository>>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repository entry>>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discover Network Context()
<<not shr>> activate Manager Discovery()
activate Announce Processing()
start Matching Task()
start Aging Task()
Service Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discover Network Context()
<<not shr>> Cache Manager Discovery()
<<OPT>> Announce Service Processing()
<<not shr>> start Renewal Task()
Service Manager()
<<not shr>> start Service Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+info cache

0..*

+service info
source

0..*

service information collection

SERVICE USER
discover Network Context()
Service Discovery()
<<not shr>> start Renewal Task()
Service User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
ProviderService

Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache

Parameter
Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

Third Party

1/31/2002 29

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Layered View of Prototype UPnP Architecture in Rapide
Derived from SEI Architectural Layers Approach

JINI
Entities

Service
Manager

Entity
Major
Functions

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

(l,ra)

UPnP
Entities

Service
Manager

Entity
Major
Functions

SU Query Behavior

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SU
Multicaster

SM
Multicaster

Unicaster

Service
User

Device & Service
Repository

SM
Announcer

SU
Cache

Filter

Multicast Query
SenderMulticast

Announcer

SM Announcement Behavior

SU Query
Search

JINI
Entities

Service
Manager

Entity
Major
Functions

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

(l,ra)

UPnP
Entities

Service
Manager

Entity
Major
Functions

Entity
Major
Functions

SU Query Behavior

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type ofType of

Part ofPart of

Legend
Type ofType of

Part ofPart of

SU
Multicaster

SM
Multicaster

Unicaster

Service
User

Device & Service
Repository

SM
Announcer

SM
Announcer

SU
Cache

Filter

Multicast Query
SenderMulticast

Announcer

SM Announcement Behavior

SU Query
Search

SU Query
Search

1/31/2002 30

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

• Change Propagation: In both two-party and three-party architectures
changes in critical characteristics of Service Descriptions (SDs) must
propagate from Service Managers (SMs) to Service Users (SUs) that
already hold copies of the SDs.
• Change propagation may take place through polling, eventing, or ad-

hoc announcements – How do these strategies compare?
• Does the existence of a third party (i.e., Service Cache Manager, or

SCM) improve or hinder performance?
• Approach: develop a series of failure test scenarios and metrics for

comparing and contrasting the alternative architectures with regard to
• Amount of inconsistent time – sum of time that SMk(SDi) not equal

to SUj(SDi) for all i, j, k
• Change propagation latency - time delay from [SMk(SDi) not equal to

SUj(SDi)] until [SMk(SDi) equal to SUj(SDi)]
• Change propagation overhead - number of messages in interval

from [SMk(SDi) not equal to SUj(SDi)] until [SMk(SDi) equal to SUj(SDi)]

How Do Service Discovery Architectures Propagate How Do Service Discovery Architectures Propagate
Changes During Link Failure?Changes During Link Failure?

1/31/2002 31

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

• Discovery and Recovery: In both two-party and three-party architectures,
SMs, SUs, and SCMs (where applicable) strive to maintain consistent
descriptions (SDs) about discovered services and about event notifications.
Link and node failures may lead to temporary loss of information about
discovered services. Once failures are repaired, the information must be
recovered.

• We seek to develop metrics to compare and contrast different service-
discovery architectures and specifications. For example:

• How do discovery latencies and overheads compare?

• How do event registration latencies and overheads compare?

• How do recovery latencies and overheads compare?

How Do Service Discovery Architectures Recover How Do Service Discovery Architectures Recover
Consistency After Link and Node Failures?Consistency After Link and Node Failures?

1/31/2002 32

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

• Emerging designs for military fault-tolerant systems (e.g., OpenWings,
OASIS, CoABS) rely on discovery-based component architectures to
enable self-organizing and self-healing behavior

• The discovery protocols underlying such systems include mechanisms that
permit network elements to continue to function as the topology varies

• However, many performance aspects of these protocols appear sensitive
to parameter settings whose optimum values depend upon network
topology

Such parameters may be manually configured and tuned in relatively
small, static environments, but their management in larger, highly
dynamic environments cannot be performed manually

Can the Response of Service Discovery Can the Response of Service Discovery
Processes Be Improved? Processes Be Improved?

1/31/2002 33

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Model and analyze protocols (UPnP, Jini, or SLP) as specified
develop SLX simulation models for each protocol
establish performance benchmarks based on default or recommended
parameter values and on required or most likely implementation of behaviors

Investigate distributed adaptation algorithms to control parameter
values (and also consider selected adaptive behaviors)

devise several algorithms to adjust control parameters in each protocol
compare performance of each algorithm against benchmark performance
select most promising algorithms for further development

Implement and validate selected algorithms in publicly available
reference software

modify available implementation of UPnP, Jini, or SLP
deploy in service-discovery test bed (now under development at NIST)
validate simulated results with live experiments

Investigating If Improvements Can Be AchievedInvestigating If Improvements Can Be Achieved
Through SelfThrough Self--AdaptationAdaptation

1/31/2002 34

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Previous Work
Verifying our approach - using Jini as an example

Overview of On-Going Work
How do different service discovery architectures respond
to node and link failures?
How can these responses be improved?

Plans for Future Work

Presentation RoadmapPresentation Roadmap

1/31/2002 35

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Extending Generic UML Model to Encompass Message Extending Generic UML Model to Encompass Message
Exchanges and AssertionsExchanges and Assertions

Can the messages exchanged among classes in our UML
structural model be unified into a common vocabulary of message
types and message attribute values?

Can consistency conditions and other assertions be defined
based on our unified structural and message-exchange models?

Can consistency conditions be expressed to include temporal
clauses that precisely bound the duration of any temporary
inconsistencies permitted by a discovery protocol?

Can these unifications be carried into our ADL model of specific
discovery protocols, so that differences among the various
architectures can be compared more directly?

1/31/2002 36

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Investigating Applicability of Architectural Models Investigating Applicability of Architectural Models
to Measure System Complexityto Measure System Complexity

Using the unified architectural models, create representations of
various complexity metrics proposed in the literature, such as
algorithmic information complexity,

1/31/2002 37

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Currently Available Paper

Generic UML Structural Model (in Rational Rose format) of
Discovery Protocols, including specific projections to Jini, UPnP, and SLP
Rapide Models of Jini and UPnP (in progress).
SLX Simulation Model of UPnP (in progress).

Available Software Artifacts

Christopher Dabrowski and Kevin Mills, “Analyzing Properties and
Behavior of Service Discovery Protocols using an Architecture-based
Approach”, accepted at DARPA-sponsored Working Conference on
Complex and Dynamic Systems Architecture, to be held December 2001.

Related Web Sites
• http://www.itl.nist.gov/div897/ctg/adl/sdp_projectpage.html
• http://w3.antd.nist.gov/net_pc.shtml

To Delve MoreTo Delve More DeeplyDeeply

1/31/2002 38

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Backup Slides

1/31/2002 39

IT
L

 P
e

r
v

a
si

v
e

 C
o

m
p

u
ti

n
g

 P
o

r
tf

o
li

o

Model & Analyze SDP Function, Structure, and Behavior

Products & Contributions

• Rapide specifications of Jini, Universal Plug and Play
(UPnP), and Service Location Protocol (SLP)

• Scenarios and topologies for evaluating discovery protocols
• Suggested consistency properties for service discovery

protocols
• Suggested metrics, based on partially ordered sets

(POSETs), for comparing and contrasting discovery protocols
• Paper identifying inconsistencies and ambiguities in service

discovery protocols and describing how they were found
• Paper proposing consistency conditions for service discovery

protocols, and evaluating how Jini, UPnP, and SLP fare
• Paper comparing and contrasting Jini, UPnP, and SLP at

the level of POSET metrics

Objectives
(1) Provide increased understanding of the competing

dynamic discovery services emerging in industry
(2) Develop metrics for comparative analysis of

different approaches to dynamic discovery and assuring
quality and correctness of discovery protocols

(3) Assess suitability of architecture description languages to
model and analyze emerging dynamic discovery protocols

Technical Approach
Develop ADL models from selected specifications for service
discovery protocols and develop a suite of scenarios and
topologies with which to exercise the ADL models
Propose a set of consistency conditions & constraints that

dynamic discovery protocols should satisfy
Propose a set of metrics, based on partially ordered sets,
with which to compare and contrast discovery protocols
Analyze ADL models to assess consistency condition

satisfaction, and to compare and contrast protocols
Recent Accomplishments:

• Developed a generic UML model encompassing the
structure and function of Jini, UPnP, SLP, Bluetooth,
and HAVi

• Projected specific UML models for Jini, UPnP, and SLP
• Completed a Rapide Model of Jini structure, function,

and behavior
• Drafted and implemented a scenario language to drive

the Rapide Jini Model.
• Developed a set of consistency conditions and

constraints for Jini behavioral model; currently being
tested using scenarios.

• Discovered significant architectural issue in interaction
between Jini directed discovery and multicast discovery

